Effective Estimates on Indefinite Ternary Forms
نویسنده
چکیده
We give an effective proof of a theorem of Dani and Margulis regarding values of indefinite ternary quadratic forms at primitive integer vectors. The proof uses an effective density-type result for orbits of the groups SO(2, 1) on SL(3,R)/ SL(3,Z).
منابع مشابه
Identification and signatures based on NP-hard problems of indefinite quadratic forms
We prove NP-hardness of equivalence and representation problems of quadratic forms under probabilistic reductions, in particular for indefinite, ternary quadratic forms with integer coefficients. We present identifications and signatures based on these hard problems. The bit complexity of signature generation and verification is quadratic using integers of bit length 150.
متن کاملOn Representations of Integers by Indefinite Ternary Quadratic Forms
Let f be an indefinite ternary integral quadratic form and let q be a nonzero integer such that −qdet(f) is not a square. Let N(T, f, q) denote the number of integral solutions of the equation f(x) = q where x lies in the ball of radius T centered at the origin. We are interested in the asymptotic behavior of N(T, f, q) as T → ∞. We deduce from the results of our joint paper with Z.Rudnick that...
متن کاملHyperbolic uniformizations through computations on ternary quadratic forms
Orders in indefinite quaternion algebras provide Fuchsian groups acting on the Poincare half-plane, used to construct the associated Shimura curves. We explain how, by using embedding theory, the elements of those Fuchsian groups depend on representations of integers by suitable ternary quadratic forms. Thus the explicit computation of those representations leads to explicit presentations and f...
متن کاملPublic Key Identification Based on the Equivalence of Quadratic Forms
The computational equivalence problem for quadratic forms is shown to be NP-hard under randomized reductions, in particular for indefinite, ternary quadratic forms with integer coefficients. This result is conditional on a variant of the Cohen-Lenstra heuristics on class numbers. Our identification scheme proves knowledge of an equivalence transform.
متن کاملInfinite product representation of solution of indefinite SturmLiouville problem
In this paper, we investigate infinite product representation of the solution of a Sturm- Liouville equation with an indefinite weight function which has two zeros and/or singularities in a finite interval. First, by using of the asymptotic estimates provided in [W. Eberhard, G. Freiling, K. Wilcken-Stoeber, Indefinite eigenvalue problems with several singular points and turning points, Math. N...
متن کامل